There is a growing interest in developing unlearnable examples (UEs) against visual privacy leaks on the Internet. UEs are training samples added with invisible but unlearnable noise, which have been found can prevent unauthorized training of machine learning models. UEs typically are generated via a bilevel optimization framework with a surrogate model to remove (minimize) errors from the original samples, and then applied to protect the data against unknown target models. However, existing UE generation methods all rely on an ideal assumption called label-consistency, where the hackers and protectors are assumed to hold the same label for a given sample. In this work, we propose and promote a more practical label-agnostic setting, where the hackers may exploit the protected data quite differently from the protectors. E.g., a m-class unlearnable dataset held by the protector may be exploited by the hacker as a n-class dataset. Existing UE generation methods are rendered ineffective in this challenging setting. To tackle this challenge, we present a novel technique called Unlearnable Clusters (UCs) to generate label-agnostic unlearnable examples with cluster-wise perturbations. Furthermore, we propose to leverage VisionandLanguage Pre-trained Models (VLPMs) like CLIP as the surrogate model to improve the transferability of the crafted UCs to diverse domains. We empirically verify the effectiveness of our proposed approach under a variety of settings with different datasets, target models, and even commercial platforms Microsoft Azure and Baidu PaddlePaddle.
translated by 谷歌翻译
Unbiased learning to rank (ULTR) studies the problem of mitigating various biases from implicit user feedback data such as clicks, and has been receiving considerable attention recently. A popular ULTR approach for real-world applications uses a two-tower architecture, where click modeling is factorized into a relevance tower with regular input features, and a bias tower with bias-relevant inputs such as the position of a document. A successful factorization will allow the relevance tower to be exempt from biases. In this work, we identify a critical issue that existing ULTR methods ignored - the bias tower can be confounded with the relevance tower via the underlying true relevance. In particular, the positions were determined by the logging policy, i.e., the previous production model, which would possess relevance information. We give both theoretical analysis and empirical results to show the negative effects on relevance tower due to such a correlation. We then propose three methods to mitigate the negative confounding effects by better disentangling relevance and bias. Empirical results on both controlled public datasets and a large-scale industry dataset show the effectiveness of the proposed approaches.
translated by 谷歌翻译
Bird's-Eye-View (BEV) 3D Object Detection is a crucial multi-view technique for autonomous driving systems. Recently, plenty of works are proposed, following a similar paradigm consisting of three essential components, i.e., camera feature extraction, BEV feature construction, and task heads. Among the three components, BEV feature construction is BEV-specific compared with 2D tasks. Existing methods aggregate the multi-view camera features to the flattened grid in order to construct the BEV feature. However, flattening the BEV space along the height dimension fails to emphasize the informative features of different heights. For example, the barrier is located at a low height while the truck is located at a high height. In this paper, we propose a novel method named BEV Slice Attention Network (BEV-SAN) for exploiting the intrinsic characteristics of different heights. Instead of flattening the BEV space, we first sample along the height dimension to build the global and local BEV slices. Then, the features of BEV slices are aggregated from the camera features and merged by the attention mechanism. Finally, we fuse the merged local and global BEV features by a transformer to generate the final feature map for task heads. The purpose of local BEV slices is to emphasize informative heights. In order to find them, we further propose a LiDAR-guided sampling strategy to leverage the statistical distribution of LiDAR to determine the heights of local slices. Compared with uniform sampling, LiDAR-guided sampling can determine more informative heights. We conduct detailed experiments to demonstrate the effectiveness of BEV-SAN. Code will be released.
translated by 谷歌翻译
When facing changing environments in the real world, the lightweight model on client devices suffers from severe performance drops under distribution shifts. The main limitations of the existing device model lie in (1) unable to update due to the computation limit of the device, (2) the limited generalization ability of the lightweight model. Meanwhile, recent large models have shown strong generalization capability on the cloud while they can not be deployed on client devices due to poor computation constraints. To enable the device model to deal with changing environments, we propose a new learning paradigm of Cloud-Device Collaborative Continual Adaptation, which encourages collaboration between cloud and device and improves the generalization of the device model. Based on this paradigm, we further propose an Uncertainty-based Visual Prompt Adapted (U-VPA) teacher-student model to transfer the generalization capability of the large model on the cloud to the device model. Specifically, we first design the Uncertainty Guided Sampling (UGS) to screen out challenging data continuously and transmit the most out-of-distribution samples from the device to the cloud. Then we propose a Visual Prompt Learning Strategy with Uncertainty guided updating (VPLU) to specifically deal with the selected samples with more distribution shifts. We transmit the visual prompts to the device and concatenate them with the incoming data to pull the device testing distribution closer to the cloud training distribution. We conduct extensive experiments on two object detection datasets with continually changing environments. Our proposed U-VPA teacher-student framework outperforms previous state-of-the-art test time adaptation and device-cloud collaboration methods. The code and datasets will be released.
translated by 谷歌翻译
Recently, Bird's-Eye-View (BEV) representation has gained increasing attention in multi-view 3D object detection, which has demonstrated promising applications in autonomous driving. Although multi-view camera systems can be deployed at low cost, the lack of depth information makes current approaches adopt large models for good performance. Therefore, it is essential to improve the efficiency of BEV 3D object detection. Knowledge Distillation (KD) is one of the most practical techniques to train efficient yet accurate models. However, BEV KD is still under-explored to the best of our knowledge. Different from image classification tasks, BEV 3D object detection approaches are more complicated and consist of several components. In this paper, we propose a unified framework named BEV-LGKD to transfer the knowledge in the teacher-student manner. However, directly applying the teacher-student paradigm to BEV features fails to achieve satisfying results due to heavy background information in RGB cameras. To solve this problem, we propose to leverage the localization advantage of LiDAR points. Specifically, we transform the LiDAR points to BEV space and generate the foreground mask and view-dependent mask for the teacher-student paradigm. It is to be noted that our method only uses LiDAR points to guide the KD between RGB models. As the quality of depth estimation is crucial for BEV perception, we further introduce depth distillation to our framework. Our unified framework is simple yet effective and achieves a significant performance boost. Code will be released.
translated by 谷歌翻译
Vision-Centric Bird-Eye-View (BEV) perception has shown promising potential and attracted increasing attention in autonomous driving. Recent works mainly focus on improving efficiency or accuracy but neglect the domain shift problem, resulting in severe degradation of transfer performance. With extensive observations, we figure out the significant domain gaps existing in the scene, weather, and day-night changing scenarios and make the first attempt to solve the domain adaption problem for multi-view 3D object detection. Since BEV perception approaches are usually complicated and contain several components, the domain shift accumulation on multi-latent spaces makes BEV domain adaptation challenging. In this paper, we propose a novel Multi-level Multi-space Alignment Teacher-Student ($M^{2}ATS$) framework to ease the domain shift accumulation, which consists of a Depth-Aware Teacher (DAT) and a Multi-space Feature Aligned (MFA) student model. Specifically, DAT model adopts uncertainty guidance to sample reliable depth information in target domain. After constructing domain-invariant BEV perception, it then transfers pixel and instance-level knowledge to student model. To further alleviate the domain shift at the global level, MFA student model is introduced to align task-relevant multi-space features of two domains. To verify the effectiveness of $M^{2}ATS$, we conduct BEV 3D object detection experiments on four cross domain scenarios and achieve state-of-the-art performance (e.g., +12.6% NDS and +9.1% mAP on Day-Night). Code and dataset will be released.
translated by 谷歌翻译
In this paper, we propose a novel multi-modal multi-task encoder-decoder pre-training framework (MMSpeech) for Mandarin automatic speech recognition (ASR), which employs both unlabeled speech and text data. The main difficulty in speech-text joint pre-training comes from the significant difference between speech and text modalities, especially for Mandarin speech and text. Unlike English and other languages with an alphabetic writing system, Mandarin uses an ideographic writing system where character and sound are not tightly mapped to one another. Therefore, we propose to introduce the phoneme modality into pre-training, which can help capture modality-invariant information between Mandarin speech and text. Specifically, we employ a multi-task learning framework including five self-supervised and supervised tasks with speech and text data. For end-to-end pre-training, we introduce self-supervised speech-to-pseudo-codes (S2C) and phoneme-to-text (P2T) tasks utilizing unlabeled speech and text data, where speech-pseudo-codes pairs and phoneme-text pairs are a supplement to the supervised speech-text pairs. To train the encoder to learn better speech representation, we introduce self-supervised masked speech prediction (MSP) and supervised phoneme prediction (PP) tasks to learn to map speech into phonemes. Besides, we directly add the downstream supervised speech-to-text (S2T) task into the pre-training process, which can further improve the pre-training performance and achieve better recognition results even without fine-tuning. Experiments on AISHELL-1 show that our proposed method achieves state-of-the-art performance, with a more than 40% relative improvement compared with other pre-training methods.
translated by 谷歌翻译
安全的加强学习(RL)研究智能代理人不仅必须最大程度地提高奖励,而且还要避免探索不安全领域的问题。在这项研究中,我们提出了CUP,这是一种基于约束更新投影框架的新型政策优化方法,享有严格的安全保证。我们杯杯发展的核心是新提出的替代功能以及性能结合。与以前的安全RL方法相比,杯子的好处1)杯子将代孕功能推广到广义优势估计量(GAE),从而导致强烈的经验性能。 2)杯赛统一性界限,为某些现有算法提供更好的理解和解释性; 3)CUP仅通过一阶优化器提供非凸的实现,该优化器不需要在目标的凸面上进行任何强近似。为了验证我们的杯子方法,我们将杯子与在各种任务上进行的安全RL基线的全面列表进行了比较。实验表明杯子在奖励和安全限制满意度方面的有效性。我们已经在https://github.com/rl-boxes/safe-rl/tree/ main/cup上打开了杯子源代码。
translated by 谷歌翻译
我们提出了Patron,这是一种新方法,它使用基于及时的不确定性估计,用于在冷启动场景下进行预训练的语言模型进行微调的数据选择,即,没有初始标记的数据可用。在顾客中,我们设计(1)一种基于迅速的不确定性传播方法来估计数据点的重要性和(2)分区 - 然后 - 剥离(PTR)策略,以促进对注释的样品多样性。六个文本分类数据集的实验表明,赞助人的表现优于最强的冷启动数据选择基准,高达6.9%。此外,仅具有128个标签,顾客分别基于香草微调和及时的学习,获得了91.0%和92.1%的全面监督性能。我们的赞助人实施可在\ url {https://github.com/yueyu1030/patron}上获得。
translated by 谷歌翻译
深度估计对于各种重要的现实世界应用至关重要,例如自动驾驶。但是,在高速场景中,它遭受了严重的性能退化,因为传统相机只能捕获模糊的图像。为了解决这个问题,Spike摄像头旨在以高框架速率捕获像素的亮度强度。但是,使用传统的单眼或立体声深度估计算法,使用尖峰摄像机的深度估计仍然非常具有挑战性,这些算法基于光度一致性。在本文中,我们提出了一种新型的不确定性引导深度融合(UGDF)框架,以融合Spike摄像机的单眼和立体声深度估计网络的预测。我们的框架是由于立体声尖峰深度估计在近距离取得更好的结果,而单眼尖峰深度估计获得了更好的结果。因此,我们引入了具有联合培训策略的双任务深度估计结构,并估算了分布式不确定性以融合单眼和立体声结果。为了证明尖峰深度估计比传统的摄像头深度估计的优势,我们为一个名为CitySpike20k的尖峰深度数据集,其中包含20k配对的样品,以进行尖峰深度估计。 UGDF在CitySpike20k上取得了最新的结果,超过了所有单眼或立体声尖峰深度估计基线。我们进行了广泛的实验,以评估我们方法对CitySpike20k的有效性和概括。据我们所知,我们的框架是第一个用于尖峰摄像头深度估算的双任务融合框架。代码和数据集将发布。
translated by 谷歌翻译